

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Types of Containers

This library includes an interface, Caridea\Container\Container, which extends the PSR-11 container interface, Psr\Container\ContainerInterface. The following methods are required by the PSR interface.

	get – Loads an object by name, throws a Caridea\Container\Exception\Missing if there is no entry for the provided name

	has – Returns true if the container has an entry for the provided name

The following methods are required by the Caridea\Container\Container interface.

	contains – An alias for has, left for backward compatibility reasons

	containsType – Returns true if the container has an entry of the provided type

	getByType – Returns an array of entries of the provided type, keyed by name

	getFirst – Returns the first entry found of the provided type, or null if there are none

	getNames – Returns an array of all entry names in this container

	getParent – Returns the parent Container or null if there is no parent

	getType – Returns the type of the entry for the provided name, or null if there is no such entry

	named – Loads an object by name, throwing an UnexpectedValueException if the entry is not of the provided type

Empty

There is a no-operation container, Caridea\Container\EmptyContainer, it works similarly to a container with no entries at all. It's useful for unit testing, and to use as a null object.

Properties

The Caridea\Container\Properties container is meant to hold scalar configuration values that might be used as settings for other components. For example, database connection settings, SMTP server credentials, or directory locations in the file system.

This container is able to store not only scalar values, but instantiated objects as well.

$props = new \Caridea\Container\Properties([
 'db.host' => 'example.com',
 'db.port' => 1337,
 'db.user' => 'dba',
 'mail.host' => 'smtp.example.net',
 'cache.holder' => new \SplObjectStorage(),
 'dates.nye' => new \DateTime('2018-12-31')
]);
$props->getType('db.host'); // string
$props->getType('cache.holder'); // SplObjectStorage

Objects

Even though Caridea\Container\Properties can store objects, it's not suited for it. The Caridea\Container\Objects container supports only objects and allows you to specify whether those objects are created only once (eager or lazy) or once for each time they are requested.

Instead of requiring a developer to adhere to some complex configuration in order to create your objects and their dependencies, the Caridea\Container\Objects class simply accepts an anonymous function that factories your object.

In the following example, we use the static method builder() to return a Caridea\Container\Builder that lets us define our object graph. We specify the $props container we created above as the parent.

$objects = \Caridea\Container\Objects::builder()
 ->lazy('mailService', 'My\Mail\Service', function ($c) {
 return new \My\Mail\Service($c->get('mail.host'));
 })
 ->proto('userService', 'My\User\Service', function ($c) {
 return new \My\User\Service($c->get('mailService'));
 })
 ->build($props);
$objects->getType('userService'); // My\User\Service
$objects->get('db.host'); // example.com

As you can see, the anonymous function that creates your objects is passed the container, which you can use to lookup dependencies by name or by type.

Singletons and Prototypes

Using the Builder, you can specify one of three instantiation types when you define a container entry.

	lazy – A lazy singleton. The factory method will be invoked only once, and only when the entry is first requested.

	eager – An eager singleton. The factory method will be invoked only once, and it will be called the instant the build method is invoked. This is useful for event listeners, as detailed in chapter three.

	proto – The factory method will be called each time the entry is requested.

Under the Hood

The Caridea\Container\Builder and Caridea\Container\Objects classes use the Caridea\Container\Provider class internally to manage entries and their instantiation behavior.

Parent Delegation

Most container methods will look to the parent container for entries it might not have.

	get – If the current container doesn't have the provided name, it delegates to the parent

	has – If the current container doesn't have the provided name, it delegates to the parent

	containsType – If the current container doesn't have the provided type, it delegates to the parent

	getByType – First, all entries of the provided type from the parent are collected, and then any entries in the current container are added (if it so happens that entries have the same name in the parent, they are overwritten by the child)

	getFirst – If the current container doesn't have the provided type, it delegates to the parent

	getNames – This method does not delegate

	getParent – Obviously, this method returns the parent if present

	getType – If the current container doesn't have the provided name, it delegates to the parent

	named – If the current container doesn't have the provided name, it delegates to the parent

Aside from system resources, there is no limit to the number of parents a container can have.

$props = new \Caridea\Container\Properties([
 'db.host' => 'example.com',
 'db.port' => 1337,
 'db.user' => 'dba',
]);
$backend = \Caridea\Container\Objects::builder()
 ->lazy('db', 'My\Db\Service', function ($c) {
 return new \My\Db\Service(
 $c->get('db.host'),
 $c->get('db.port'),
 $c->get('db.user')
);
 })->build($props);
$frontend = \Caridea\Container\Objects::builder()
 ->lazy('controller', 'My\Web\Controller', function ($c) {
 return new \My\Web\Controller(
 $c->get('db')
);
 })->build($backend);

$controller = $frontend->get('controller');

Events

The Caridea\Container\Objects class is a concrete implementation of the Caridea\Event\Publisher interface. As detailed in the caridea-event documentation, classes which implement Publisher should send the event object provided to the publish method to any registered listeners.

Here is an example Event and Listener.

namespace Foobar;

use Caridea\Event\Event;
use Caridea\Event\Listener;

class AuthenticationEvent extends Event
{
}

class AuthListener implements Listener
{
 public function notify(Event $event)
 {
 error_log('I got an event at ' . date('c', (int) $event->getWhen()));
 }
}

Now, let's create an Objects container and add the listener, making sure to register it as needing to be eagerly instantiated.

use Caridea\Container\Objects;

$objects = Objects::builder()
 ->eager('foobarAuthListener', \Foobar\AuthListener, function ($c) {
 return new \Foobar\AuthListener();
 })->build();

Finally, we publish the event, and our listener receives it.

class EventCreator
{
 public function create()
 {
 // all events need a "source" object
 return new \Foobar\AuthenticationEvent($this);
 }
}
$creator = new EventCreator();
$objects->publish($creator->create()); // the container calls our `notify` method, and it adds to the `error_log`

Listeners are called in defined order, and only start receiving events once actually created. That's why defining them as eager is important.

Aware Interfaces

There are two main interfaces that the Caridea\Container\Objects class supports when objects are instantiated.

ContainerAware

If an object implements Caridea\Container\ContainerAware, it will have its setContainer method called as soon as it's instantiated.

A simple trait helps with this interface.

class MyContainerAware implements \Caridea\Container\ContainerAware
{
 use \Caridea\Container\ContainerSetter;

 public function __construct()
 {
 // set the property with the no-op container instead of leaving it null.
 // it's a good habit!
 $this->container = new \Caridea\Container\EmptyContainer();
 }
}

PublisherAware

If an object implements Caridea\Event\PublisherAware, it will have its setPublisher method called as soon as it's instantiated.

A simple trait helps with this interface.

class MyPublisherAware implements \Caridea\Event\PublisherAware
{
 use \Caridea\Event\PublisherSetter;

 public function __construct()
 {
 // set the property with the no-op publisher instead of leaving it null.
 // it's a good habit!
 $this->setPublisher(new \Caridea\Event\NullPublisher());
 }
}

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

